St. Petersburg Paradoksu Azalan Marjinal Fayda Teorisi Nedir?

3 minute read
0
Bildergebnis für yazi tura 
St. Petersburg Paradoksu Azalan Marjinal Fayda Teorisi Nedir?
St. Petersburg paradoksu olasılık teorisinde çok önemli bir yere sahip bir paradokstur. "St. Petersburg game" olarak da bilinir.
Oyun beklenen değere bağlı karar veren insanlar açısından oynanamazdır. Marjinal kazanç açısından problem tekrar ele alındığında yani katılımcıların sınırlı varlıkları incelendiğinde ya da satılmayan bir şeyin zaten alınamadığını düşündüğümüz vakit (bunun yanında satıcıların olası zararı düşünüldüğü vakit) problem çözülmektedir. Paradoks Daniel Bernoulli tarafından 1738’te the Commentaries of the Imperial Academy of Science of Saint Petersburg dergisinde tanıtılmıştır. Ancak problemin adı ilk defa 9 eylül 1713’te Daniel Bernoulli’nin kuzeni Nicolas Bernoulli’nin Pierre Raymond de Montmort’a gönderdiği mektupta karşımıza çıkmaktadır.St. Petersburg problemi bir şans oyunu olup oyunda belli bir giriş ücreti ödendikten sonra para atıp yazı gelip gelmediğine bakılmaktadır. Oyunda el değişimi gerçekleştiği vakit ödül iki katına çıkmaktadır. Örneğin ilk para atılma denemesi gerçekleştikten sonra ödül eğer bir lira ise ikinci denemenin ödülü iki lira olmaktadır. Bu oyun için giriş ücretinin ne kadar olması gerektiği üzerinde tartışmalar olmuştur. Bunun nedeni beklenen ödülün sonlu olmamasıdır. X’i ödül rastgele değişkeni olarak tanımladığımız vakit bunu çok basit bir şekilde göstermek mümkündür çünkü X’in olasılık dağılımı geometrik dağılım sergilemektedir.
Şayet beklenen ödülü E diye tanımlarsak;
 
Beklenen ödül gösterildiği gibi sonsuza gittiği için oyuncu için ödülün herhangi bir sınırı olmamaktadır. Bu nedenle oyuncu ne kadar ücret öderse ödesin her bakımdan avantajlıdır. Buna rağmen genelde bu tarz bir oyuna katılım çok az olmaktadır ve bu da bir çelişki ortaya koymaktadır. Klasik St. Petersburg probleminde bir yarar fonksiyonu, beklenen yarar hipotezi ve paranın yararının azalması varsayımı bulunmaktadır. Bernoulli’nin önerdiği logaritmik yarar fonksiyonu bu teoride genel olarak kullanılmaktadır. Bu fonksiyon kumarbazın toplam parası olarak w’nun bir fonksiyonu olup paranın azalan yararı buna monte edilmiş ve her olası olay için para miktarındaki logaritmik yarar fonksiyonundaki değişim hesaplanmaktadır ve o olayın olasılığı ile çarpılmaktadır. Beklenen yarar aşağıdaki şekilde yazılabilmektedir;


Ancak gerçek hayattaki uygulamaları daha farklı olmaktadır. ÖrneÄŸin bir kasinodaki toplam yatırım W lira olsun. Bu durumda en fazla L=1+log2 (W) sayıda bu tarz oyun oynatabilmektedir. Bu durumda kuranın beklenen deÄŸeri aÅŸağıdaki ÅŸekilde belirlenmektedir; 
 
Bu formül kumarbazın varlığı ile kumar için ödeyeceği miktar arasındaki ilişkiyi belirtmektedir. Bu kumarın daha genişletilmiş olan hali olan Süper St. Petersburg paradoksunu çözmek için iki yol önerilmiştir.
Sonlu beklenen deÄŸer içeren kuraların çekilmesi. Bu sınırlama altında yarar fonksiyonu konkav olduÄŸu sürece paradoks kaybolmaktadır (bknz. Arrow (1974).Yarar fonksiyonunun üst limiti olduÄŸu varsayılabilir.Yakın zamanlarda beklenen yarar teorisi daha davranışsal karar modellemeye kadar geniÅŸletilmiÅŸtir. Bu yeni branÅŸta yarar fonksiyonu konkav olsa bile St. Petersburg paradoksu ortaya çıkabilmektedir. (bknz. Rieger & Wang (2006)) Bu nedenle St. Petersburg problemi günümüze kadar önemini korumuÅŸ bir problemdir. 
Ähnliches Foto 
Konuyu özetlersek,
Azalan marjinal fayda ilkesine göre sade bir açıklaması şöyle yapılabilir:
Bir üründen tüketilen miktar arttıkça, tüketilen her bir ilave birimin kişiye sağladığı faydanın azalması şeklinde açıklayabileceğimiz azalan marjinal fayda ilkesi, aynı şekilde gelir için de geçerlidir. Yani, gelir düzeyi arttıkça, bu gelire ilave olan yeni kazançların kişiye sağladığı fayda gittikçe azalmaktadır.
Bu ilkeden yola çıkarak, kişilerin bahislerde ortaya neden sınırlı miktarda para koyduğu şöyle açıklanabilir: Bir kumarbazın bahsin her bir turunda 100 lira kazandığını veya kaybettiğini varsayal
ım. Bu kişinin, kumar oynamaya devam etmesi için, 100 lira kazanma şansının, 100 lira kaybetme riskinden daha fazla olması gerekir, yani 100 lira kazanma şansı, yarıdan fazla olmalıdır. çünkü, kazanılan her ilave 100 lira, birim olarak aynı olsa da, fayda açısından bakıldığında, gittikçe azalan bir fayda sağlamaktadır. tam tersi olarak, kaybedilen her 100 lira ise gittikçe artan bir faydayı temsil eder. Kardinal fayda açısından yaklaşıp faydaya rakamsal bir değer verirsek, örneğin, 1000 lira geliri olan kişinin ilave kazanacağı 100 lira 100 birim ilave fayda sağlayıp, kaybedeceği 100 lira 100 birim fayda kaybetmesine neden olacakken, geliri 1100 liraya çıkan kişinin buna ilave kazanacağı 100 liranın faydası 80 birime düşmüş, 100 lira kaybetmesi durumunda meydana gelecek fayda kaybı ise 120 birime çıkmıştır.
Bernouilli'nin bu tespiti, neo-klasik iktisatçıların toplumda maksimum refahın saÄŸlanması için gelir dağılımının daha adaletli hale getirilmesine yönelik sundukları teorilerde önemli bir etmen olmuÅŸtur. 

  
Kaynaklar
1.https://academic.oup.com/qje/article-abstract/88/1/136/1914319?redirectedFrom=fulltext
2.https://pdfs.semanticscholar.org/a9a9/cf3cbf5dc9268ab04de604ad65d7eeb7692f.pdf
3.https://www.jstor.org/stable/1909829?seq=1#page_scan_tab_contents
4.https://link.springer.com/article/10.1007/s00199-005-0641-6 
5.https://istatistikseliletisim.files.wordpress.com/2011/11/20111029a01-st-petersburg-paradoksu.pdf
Tags

Yorum Gönder

0 Yorumlar
* Please Don't Spam Here. All the Comments are Reviewed by Admin.
Yorum Gönder (0)
Our website uses cookies to enhance your experience. Learn More
Accept !